Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 242
1.
Clin Pharmacol Ther ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38695530

On June 6, 2022, the FDA expanded the indications for mycophenolate mofetil (MMF) to include the prophylaxis of organ rejection in combination with other immunosuppressants in pediatric recipients of allogeneic heart or liver transplants aged 3 months and older. The approved oral dosing regimen for these patients was a starting dose of 600 mg/m2 with titration up to a maximum of 900 mg/m2 twice daily. Data to support efficacy in pediatric patients were derived from established pharmacokinetic (PK) relationships across approved populations, a PK study in pediatric liver transplant recipients, and information from the Scientific Registry of Transplant Recipients database. Information supporting safety was based on comparing mycophenolic acid (MPA) exposure with that in pediatric kidney transplant recipients, the published literature, and post-marketing safety reports. Efficacy in pediatric patients was established based on extrapolation of efficacy from studies in adult liver, adult heart, and pediatric kidney transplant populations, and similarity in MPA exposure between pediatric and adult patients. Review of the data supported an oral dosing regimen for pediatric heart transplant and liver transplant recipients consisting of a starting dose of 600 mg/m2 up to a maximum of 900 mg/m2 b.i.d. A dosage range for MMF is recommended recognizing that the MMF dose may be modified in clinical practice for myriad factors. The dosage recommendations in the labeling for pediatric liver and pediatric heart transplant patients are intended to permit individualized dosing based on clinical assessment of these factors.

2.
Sci Total Environ ; 927: 172402, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608888

Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.


Bioelectric Energy Sources , Metagenomics , Nanotubes, Carbon , Toluene , Toluene/metabolism , Aniline Compounds , Biodegradation, Environmental , Electricity , Pseudomonas/metabolism , Pseudomonas/genetics , Electrodes
3.
Environ Sci Pollut Res Int ; 31(14): 21962-21972, 2024 Mar.
Article En | MEDLINE | ID: mdl-38400963

In the context of sustainable development, potentially toxic element (PTE) contamination of soil and large-scale disposal of sludge are two major environmental issues that need to be addressed urgently. It is of great significance to develop efficient and green technologies to solve these problems simultaneously. This study investigated the effects of a 5% addition of thermally treated sludge residues (fermentation and pyrolysis residues) in synergy with L. perenne on soil organic matter, mineral nutrients, PTE speciation, and PTE uptake and transport by L. perenne in an e-waste-contaminated soil through pot experiments. The results showed that the thermally treated sludge residues significantly increased soil electrical conductivity, cation exchange capacity, organic matter, available phosphorus, and exchangeable potassium contents. New PTE-containing crystalline phases were detected, and dissolved humic substances were found. Sludge fermentation residue significantly increased dissolved organic matter content, whereas sludge pyrolysis residue showed no significant effect. The combination of thermally treated sludge residues and L. perenne increased the residual fractions of Cu, Zn, Pb, and Cd. The thermally treated sludge residues promoted L. perenne growth, increasing fresh weight, plant height, and phosphorus and potassium uptake. The uptake of Cu, Zn, Pb, and Cd by L. perenne was significantly reduced. This approach has the potential for applications in the ecological restoration of e-waste-contaminated soils.


Electronic Waste , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Soil/chemistry , Cadmium/analysis , Sewage/chemistry , Biological Availability , Lead , Soil Pollutants/analysis , Phosphorus , Potassium
4.
Clin Pharmacol Ther ; 115(4): 890-895, 2024 04.
Article En | MEDLINE | ID: mdl-38348530

A randomized, double-blind, placebo-controlled study (SAVEMORE trial) provided data to support an Emergency Use Authorization (EUA) of anakinra in hospitalized adults with positive results of direct severe acute respiratory syndrome-coronavirus 2 viral testing with pneumonia requiring supplemental oxygen (low- or high-flow oxygen) who are at risk of progressing to severe respiratory failure and likely to have an elevated plasma soluble urokinase plasminogen activator receptor (suPAR). Currently, the suPAR assay is not commercially available in the United States. An alternative method was needed to identify patients that best reflect the population in the clinical trial selected based on suPAR level ≥ 6 ng/mL at baseline. A machine learning approach based on data from the SAVEMORE trial was used to develop a scoring rule to identify patients who are likely to have a suPAR level ≥ 6 ng/mL at baseline. External validation of the scoring rule was conducted with data from a different trial (SAVE). This clinical scoring rule with high positive predictive value, high specificity, reasonable sensitivity, and biological relevance is expected to identify patients who are likely to have an elevated suPAR level ≥ 6 ng/mL at baseline. As such, it is included in the EUA to identify patients that fall within the authorized population for whom the known and potential benefits outweigh the known and potential risks of anakinra.


COVID-19 , Adult , Humans , Biomarkers , Interleukin 1 Receptor Antagonist Protein/adverse effects , Oxygen , Prognosis , Receptors, Urokinase Plasminogen Activator , SARS-CoV-2 , Randomized Controlled Trials as Topic
5.
Appl Environ Microbiol ; 90(2): e0195923, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38193681

Propanethiol (PT) is a hazardous pollutant that poses risks to both the environment and human well-being. Pseudomonas putida S-1 has been identified as a microorganism capable of utilizing PT as its sole carbon source. However, the metabolic pathway responsible for PT degradation in P. putida S-1 has remained poorly understood, impeding its optimization and practical application. In this study, we investigated the catabolic network involved in PT desulfurization with P. putida S-1 and identified key gene modules crucial to this process. Notably, propanethiol oxidoreductase (PTO) catalyzes the initial degradation of PT, a pivotal step for P. putida S-1's survival on PT. PTO facilitates the oxidation of PT, resulting H2S, H2O2, and propionaldehyde (PA). Catalase-peroxidase catalyzes the conversion of H2O2 to oxygen and water, while PA undergoes gradual conversion to Succinyl-CoA, which is subsequently utilized in the tricarboxylic acid cycle. H2S is digested in a comprehensive desulfurization network where sulfide-quinone oxidoreductase (SQOR) predominantly converts it to sulfane sulfur. The transcriptome analysis suggests that sulfur can be finally converted to sulfite or sulfate and exported out of the cell. The PT degradation capacity of P. putida S-1 was enhanced by increasing the transcription level of PTO and SQOR genes in vivo.IMPORTANCEThis work investigated the PT catabolism pathway in Pseudomonas putida S-1, a microorganism capable of utilizing PT as the sole carbon source. Critical genes that control the initiation of PT degradation were identified and characterized, such as pto and sqor. By increasing the transcription level of pto and sqor genes in vivo, we have successfully enhanced the PT degradation efficiency and growth rate of P. putida S-1. This work does not only reveal a unique PT degradation pathway but also highlights the potential of enhancing the microbial desulfurization process in the bioremediation of thiol-contaminated environment.


Oxidoreductases , Pseudomonas putida , Quinone Reductases , Humans , Oxidoreductases/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Hydrogen Peroxide/metabolism , Sulfhydryl Compounds/metabolism , Biodegradation, Environmental , Sulfur/metabolism , Carbon/metabolism
6.
Appl Microbiol Biotechnol ; 108(1): 159, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38252324

Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.


Biofilms , Chlorobenzenes , Cell Adhesion , Kinetics , Cell Membrane , Gases
7.
Chemosphere ; 350: 141105, 2024 Feb.
Article En | MEDLINE | ID: mdl-38171394

The efficient biodegradation of volatile chlorinated hydrocarbons using microbial fuel cells (MFCs) offers a feasible approach for purifying waste gas and alleviating energy crises. However, power generation is limited by poor pollutant biodegradation and slow electron transfer. The bifunctional bacterium Acinetobacter sp. HY-99C was screened and used to improve the performance of a conventional MFC. The inoculation of strain HY-99C into the conventional MFC promoted the formation of a compact biofilm with high metabolic activity and an enriched bifunctional genus (Acinetobacter), which resulted in the accelerated decomposition of chlorinated aromatic compounds into biodegradable organic acids. This led to efficient chlorobenzene removal and power generation from the MFC, with a chlorobenzene elimination capacity of 70.8 g m-3 h-1 and power density of 89.6 mW m-2, which are improved over those of previously reported MFCs. This study provides novel insights into enhancing pollutant removal and power generation in MFCs.


Bioelectric Energy Sources , Environmental Pollutants , Bioelectric Energy Sources/microbiology , Gases , Bacteria , Chlorobenzenes , Electrodes , Electricity
8.
Small ; 20(7): e2304754, 2024 Feb.
Article En | MEDLINE | ID: mdl-37632311

Microbial fuel cells (MFCs) are of great potential for wastewater remediation and chemical energy recovery. Nevertheless, limited by inefficient electron transfer between microorganisms and electrode, the remediation capacity and output power density of MFCs are still far away from the demand of practical application. Herein, a pore-matching strategy is reported to develop uniform electroactive biofilms by inoculating microorganisms inside a pore-matched sponge, which is assembled of core-shell polyaniline@carbon nanotube (PANI@CNT). The maximum power density achieved by the PANI@CNT bioanode is 7549.4 ± 27.6 mW m-2 , which is higher than the excellent MFCs with proton exchange membrane reported to date, while the coulombic efficiency also attains a considerable 91.7 ± 1.2%. The PANI@CNT sponge enriches the exoelectrogen Geobacter significantly, and is proved to play the role of conductive pili in direct electron transfer as it down-regulates the gene encoding pilA. This work exemplifies a practicable strategy to develop excellent bioanode to boost electron extraction in MFCs and provides in-depth insights into the enhancement mechanism.


Aniline Compounds , Bioelectric Energy Sources , Nanotubes, Carbon , Electrons , Electron Transport , Fimbriae, Bacterial , Electric Conductivity , Electrodes , Nanotubes, Carbon/chemistry
9.
Environ Res ; 238(Pt 2): 117214, 2023 12 01.
Article En | MEDLINE | ID: mdl-37783332

Biodesulfurization is a mature technology, but obtaining biosulfur (S0) that can be easily settled naturally is still a challenge. Increasing the sulfide load is one of the known methods to obtain better settling of S0. However, the inhibitory effect of high levels of sulfide on microbes has also not been well studied. We constructed a high loading sulfide (1.55-10.86 kg S/m3/d) biological removal system. 100% sulfide removal and 0.56-2.53 kg S/m3/d S0 (7.0 ± 0.09-16.4 ± 0.25 µm) recovery were achieved at loads of 1.55-7.75 kg S/m3/d. Under the same load, S0 in the reflux sedimentation tank, which produced larger S0 particles (24.2 ± 0.73-53.8 ± 0.70 µm), increased the natural settling capacity and 45% recovery. For high level sulfide inhibitory effect, we used metagenomics and metatranscriptomics analyses. The increased sulfide load significantly inhibited the expression of flavin cytochrome c sulfide dehydrogenase subunit B (fccB) (Decreased from 615 ± 75 to 30 ± 5 TPM). At this time sulfide quinone reductase (SQR) (324 ± 185-1197 ± 51 TPM) was mainly responsible for sulfide oxidation and S0 production. When the sulfide load reached 2800 mg S/L, the SQR (730 ± 100 TPM) was also suppressed. This resulted in the accumulation of sulfide, causing suppression of carbon sequestration genes (Decreased from 3437 ± 842 to 665 ± 175 TPM). Other inhibitory effects included inhibition of microbial respiration, production of reactive oxygen species, and DNA damage. More sulfide-oxidizing bacteria (SOB) and newly identified potential SOB (99.1%) showed some activity (77.6%) upon sulfide accumulation. The main microorganisms in the sulfide accumulation environment were Thiomicrospiracea and Burkholderiaceae, whose sulfide oxidation capacity and respiration were not significantly inhibited. This study provides a new approach to enhance the natural sedimentation of S0 and describes new microbial mechanisms for the inhibitory effects of sulfide.


Hydrogen Sulfide , Sulfides , Oxidation-Reduction , Bacteria/metabolism , Bioreactors
10.
Water Res ; 246: 120677, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37827037

Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.


Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Silicone Oils , Sulfhydryl Compounds , Sulfur , Biofilms , Electrodes , Electricity
11.
Heliyon ; 9(9): e20125, 2023 Sep.
Article En | MEDLINE | ID: mdl-37810165

Industrial parks have more complex O3 formation mechanisms due to a higher concentration and more dense emission of precursors. This study establishes an artificial neural network (ANN) model with good performance by expanding the moment and concentration changes of pollutants into general variables of meteorological factors and concentrations of pollutants. Finally, the O3 formation rules and concentration response to the changes of volatile organic compounds (VOCs) and nitrogen oxides (NOx) was explored. The results showed that the studied area belonged to the NOx-sensitive regime and the sensitivity was strongly affected by relative humidity (RH) and pressure (P). The concentration of O3 tends to decrease with a higher P, lower temperature (Temp), and medium to low RH when nitric oxide (NO) is added. Conversely, at medium P, high Temp, and high RH, the addition of nitrogen dioxide (NO2) leads to a larger decrease capacity in O3 concentration. More importantly, there is a local reachable maximum incremental reactivity (MIRL) at each certain VOCs concentration level which linearly increased with VOCs. The general maximum incremental reactivity (MIR) may lead to a significant overestimation of the attainable O3 concentration in NOx-sensitive regimes. The results can significantly support the local management strategies for O3 and the precursors control.

12.
Water Res ; 245: 120578, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37688857

Efficient removal of chlorinated organic contaminants using the microbial fuel cell (MFC) provides a promising strategy to alleviate water pollution and energy crisis. However, bio-degradation is challenged by poor biofilm formation and sluggish intracellular electron transfer, causing unsatisfactory electricity generation. To address those problems, a metal-organic framework derivative, Ru-porous TiO2 (Ru-PT) bio-anode has been artfully designed herein for chlorobenzene removal. The Ru-PT bio-anode not only formed a compact anodic biofilm due to the large specific surface area of PT, but more importantly, it introduced special pseudocapacitance-enhanced intracellular electron transfer by slowly implanting Ru4+/Ru3+ redox pair into bacteria. Such a Ru4+/Ru3+ implantation was then found to directionally induce the enrichment of a dual-functional genus (degrader & exoelectrogen), Pseudomonas, thereby enhancing the conversion of bio-refractory chlorophenols towards biodegradable carboxylic acids. These features allowed our MFC to have a resilient chlorobenzene removal and accompanied satisfactory electricity generation, with power density, coulombic efficiency, and turnover frequency reaching 662 mW m-2, 8.7%, and 386,622 s-1, which outcompeted those of other MFCs reported. Further, benefiting from the reversible pseudocapacitance, the Ru-PT bio-anode intriguingly functioned as an internal capacitor for electricity storage. This work provided important insights into cost-effective bio-anode development and offered an avenue for engineering MFC.


Bioelectric Energy Sources , Chlorophenols , Metal-Organic Frameworks , Electrons , Electricity , Electrodes
13.
J Clin Pharmacol ; 63(12): 1417-1429, 2023 12.
Article En | MEDLINE | ID: mdl-37507728

Pharmacokinetic (PK) comparisons between therapeutic biologics have largely been based on the total area under the concentration-time curve (AUC) and the maximum concentration (Cmax ). For biologics with a long half-life, a PK comparability study may be long in duration and costly to conduct. The goal of this study was to evaluate whether a truncated AUC (tAUC) can be used to assess PK comparability when bridging prefilled syringe (PFS) and autoinjector (AI) treatment options for biologics with a long half-life. Fifteen biologics license applications (BLAs) were included to determine the concordance and geometric percent coefficient of variation (%CV) between tAUCs evaluated on days 7, 14, 21, and 28 and AUC evaluated to infinity (AUC0-inf ). Concordance is established if the tAUCs are comparable with AUC0-inf . Trial simulation was performed to examine the effect of the absorption rate constant (ka ) and sample size on the concordance of tAUCs. The tAUCs evaluated on day 14, 21, and 28 had 100% concordance with AUC0-inf for all 15 BLAs. The concordance of tAUC evaluated at day 7 was 87.5%. Based on the trial simulation, tAUC evaluated to day 28 post-dose can achieve high concordance (≥85%) for biologics exhibiting linear or nonlinear elimination with a ka of ≥0.1/day and with a sample size of 70 subjects per arm. tAUC appears to be a promising alternative PK measure, relative to AUC0-inf , for PK comparability assessments.


Biosimilar Pharmaceuticals , Syringes , Humans , Therapeutic Equivalency , Area Under Curve , Biosimilar Pharmaceuticals/pharmacokinetics , Injections, Subcutaneous
14.
Bull Environ Contam Toxicol ; 111(1): 15, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37452857

To promote the reuse of remediated soil (RS) and facilitate the cleanup of rainwater in sponge city, we investigated the effects of ceramsite made from RS serving as urban street cushion. Ceramsite was prepared by RS or pollution-free soil (PS) and showed no difference in physical properties. Compared with gravel, ceramsite had purification effects on effluents, reducing the content of chemical oxygen demand, total nitrogen, and ammoniacal nitrogen. However, the content of total phosphorus and the concentration of Cr(VI) and arsenic slightly increased in ceramsite groups, inferring potential risk. Microbial community analysis proved that ceramsite promoted microbial growth and increased microbial diversity. A long-term risk assessment indicated that ceramsite was good at fixing heavy metals during leaching process. Taken together, ceramsite prepared from RS could serve as excellent urban street cushion with little potential risk to surroundings.


Metals, Heavy , Soil , Metals, Heavy/analysis , Biological Oxygen Demand Analysis , Risk Assessment , Nitrogen/analysis
15.
J Hazard Mater ; 457: 131794, 2023 09 05.
Article En | MEDLINE | ID: mdl-37315409

The treatment of chlorinated volatile organic compounds faces challenges of secondary pollution and less-efficiency due to the substitution of chlorine. Microbial fuel cells (MFCs) provide a promising opportunity for its abatement. In this study, a novel Fe3O4 nanoparticles and silicone-based powder (SP) were integrated and immobilized on carbon felt (CF+Fe3O4@SP), which was further used as anode in the chlorobenzene (CB) powered MFC. Owing to the cooperation between SP and Fe3O4, the anode exhibited excellent performance for both biodechlorination and power generation. The results indicated that the CF+Fe3O4@SP anode loaded MFC achieved 98.5% removal of 200 mg/L CB within 28 h, and the maximum power density was 675.9 mW/m3, which was a 45.6% increase compared to that of the bare CF anode. Microbial community analysis indicated that the genera Comamonadaceae, Pandoraea, Obscuribacteraceae, and Truepera were dominated, especially, the Comamonadaceae and Obscuribacteraceae showed outstanding affinity for Fe3O4 and SP, respectively. Moreover, the proportion of live bacteria, secretion of extracellular polymer substances, and protein content in the extracellular polymer substances were significantly increased by modifying Fe3O4@SP onto the carbon-based anode. Thus, this study provides new insights into the development of MFCs for refractory and hydrophobic volatile organic compounds removal.


Bioelectric Energy Sources , Volatile Organic Compounds , Water Pollutants, Chemical , Water Purification , Bacteria , Carbon/chemistry , Electricity , Electrodes , Polymers , Powders , Water Purification/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
16.
Arthritis Rheumatol ; 75(10): 1856-1866, 2023 10.
Article En | MEDLINE | ID: mdl-37067688

OBJECTIVE: Stakeholders met to address persistent challenges facing the development of therapeutics for polyarticular juvenile idiopathic arthritis (pJIA), which result in fewer approved therapies for children with pJIA than adults with rheumatoid arthritis (RA) and long lag times from adult RA approval to pediatric labeling. Ensuring that new medications are authorized in a timely manner to meet the needs of JIA patients worldwide is critically important to multiple stakeholders. METHODS: The Food and Drug Administration in collaboration with the University of Maryland Center for Regulatory Science and Innovation held a public workshop entitled "Accelerating Drug Development for pJIA" on October 2, 2019, to address challenges surrounding access to new medications for children and adolescents with pJIA. Regulatory, academic, and industry stakeholders, as well as patient representatives, participated in the workshop, which consisted of 4 sessions, including panel discussions. RESULTS: The workshop facilitated broad public discussion of challenges facing the development of pJIA therapeutics, highlighting areas of need and outlining opportunities to expedite development, while underscoring the necessity of close collaboration between all stakeholders, including patients and families. CONCLUSION: This report summarizes key aspects of the workshop, including the appropriate application of innovative approaches to the development of pJIA therapeutics, including extrapolation, to address current challenges and provide timely access to newer safe and effective treatments. Long-term safety assessment is of pressing concern to stakeholders and cannot be fully extrapolated from adult studies but requires consistent postmarketing long-term follow-up.


Arthritis, Juvenile , Arthritis, Rheumatoid , Adult , Adolescent , Humans , Child , Arthritis, Juvenile/drug therapy , Clinical Trials as Topic , Treatment Outcome , Drug Development
17.
Toxics ; 11(4)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37112523

Heavy metal pollution in soils threatens food safety and human health. Calcium sulfate and ferric oxide are commonly used to immobilize heavy metals in soils. However, the spatial and temporal variations of the heavy metals' bioavailability in soils regulated by a combined material of calcium sulfate and ferric oxide (CSF) remain unclear. In this work, two soil column experiments were conducted to investigate the spatial and temporal variations of CSF immobilized Cd, Pb, and As. In the horizontal soil column, the results showed that CSF's immobilization range for Cd increased over time, and adding CSF in the center of the soil column decreased the concentrations of bioavailable Cd significantly, up to 8 cm away by day 100. The CSF immobilization effect on Pb and As only existed in the center of the soil column. The CSF's immobilization depths for Cd and Pb in the vertical soil column increased over time and extended to 20 cm deep by day 100. However, the CSF's immobilization depths for As only extended to between 5 and 10 cm deep after 100 days of incubation. Overall, the results from this study can serve as a guide to determine the CSF application frequency and spacing distance for the in-situ immobilization of heavy metals in soils.

18.
J Environ Sci (China) ; 130: 114-125, 2023 Aug.
Article En | MEDLINE | ID: mdl-37032028

Volatile organic compounds (VOCs) are the dominant pollutants in industrial parks. However, they are not generally considered as part of the air quality index (AQI) system, which leads to a biased assessment of pollution in industrial parks. In this study, a supplementary assessment system of AQI-V was established by analyzing VOCs characteristics with vehicle-mounted PTR-TOFMS instrument, correlation analysis and the standards analysis. Three hourly and daily scenarios were considered, and the hierarchical parameter setting was further optimized by field application. The hourly and daily assessments revealed the evaluation factors for the discriminability of different air quality levels, practiced value for regional air quality improvement, and the reservation of general dominant pollutants. Finally, the universality testing in ZPIP successfully recognized most of the peaks, with 54.76%, 38.39% and 6.85% for O3, VOCs and NO2 as the dominant pollutant, and reflected the daily ambient air quality condition, together with the dominant pollutant. The AQI-V system with VOCs sub-index is essential for air quality evaluation in industrial parks, which can further provide scientific support to control the pollution of VOCs and the secondary pollutant, therefore significantly improve the air quality in local industrial parks.


Air Pollutants , Air Pollution , Environmental Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Environmental Pollutants/analysis , Industry , Air/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , China , Particulate Matter/analysis
19.
J Hazard Mater ; 450: 131063, 2023 05 15.
Article En | MEDLINE | ID: mdl-36867905

Mass transfer limitation usually causes the poor performance of biotrickling filters (BTFs) for the treatment of hydrophobic volatile organic compounds (VOCs) during long-term operation. In this study, two identical lab-scale BTFs were established to remove a mixture of n-hexane and dichloromethane (DCM) gases using non-ionic surfactant Tween 20 by Pseudomonas mendocina NX-1 and Methylobacterium rhodesianum H13. A low pressure drop (≤110 Pa) and a rapid biomass accumulation (17.1 mg g-1) were observed in the presence of Tween 20 during the startup period (30 d). The removal efficiency (RE) of n-hexane was enhanced by 15.0%- 20.5% while DCM was completely removed with the inlet concentration (IC) of 300 mg·m-3 at different empty bed residence times in the Tween 20 added BTF. The viable cells and the relative hydrophobicity of the biofilm were increased under the action of Tween 20, which facilitated the mass transfer and enhanced the metabolic utilization of pollutants by microbes. Besides, Tween 20 addition enhanced the biofilm formation processes including the increased extracellular polymeric substance (EPS) secretion, biofilm roughness and biofilm adhesion. The kinetic model simulated the removal performance of the BTF with Tween 20 for the mixed hydrophobic VOCs, and the goodness-of-fit was above 0.9.


Air Pollutants , Volatile Organic Compounds , Bioreactors , Polysorbates , Volatile Organic Compounds/analysis , Kinetics , Extracellular Polymeric Substance Matrix/chemistry , Air Pollutants/analysis , Filtration , Biofilms , Hydrophobic and Hydrophilic Interactions , Biodegradation, Environmental
20.
Chemosphere ; 313: 137542, 2023 Feb.
Article En | MEDLINE | ID: mdl-36529174

The treatment of waste-gas containing chlorinated volatile organic compounds (CVOCs) has become a difficult issue in current air pollution control. Biotrickling filters (BTFs) have been recognized to be applicable for the treatment of CVOCs, but research on the biodegradation of binary gaseous CVOCs is rare. Herein, a BTF inoculated with Methylobacterium (M.) rhodesianum H13, Starkeya sp. T-2 and activated sludge was established to investigate the biodegradation of the gaseous dichloromethane (DCM) and 1,2-dichloroethane (1,2-DCE) and their interactions implicated. The bioaugmented BTF showed a faster startup (13 days), better removal efficiencies of DCM (80%) and 1,2-DCE (72%), and superior mineralization (65.9%) than that inoculated with activated sludge alone. The ECs of DCM and 1,2-DCE were positively related with the inlet load when the total inlet load was <50 g m-3 h-1. However, inlet loads higher than 50 g m-3 h-1 led to dramatic drop of the RE of DCM and 1,2-DCE due to the limitation of the degradation capacity of microorganisms and the toxic effect of high-concentration substrates. Besides, BTF could stand a lower shock load of 400 mg m-3, while higher shock loads would deteriorate the RE of DCM and 1,2-DCE. And BTF showed better impact resistance toward DCM than 1,2-DCE, probably because the 1,2-DCE biodegrading bacteria was more sensitive to the concentration change. For the same reason, the removal recovery of DCM after starvation was quicker than 1,2-DCE. Kinetic interactions were quantified by the EC-SKIP model, results of which revealed that DCM cast negative effect on 1,2-DCE biodegradation, while 1,2-DCE could promote DCM biodegradation. Moreover, both the results of real-time PCR and high-throughput sequencing showed M. rhodesianum H13 had stronger competitiveness and adaptability than Starkeya sp. T-2. The survived M. rhodesianum H13 and Starkeya sp. T-2 after starvation robustly demonstrated the success of bioaugmentation as well as its great potential of engineering application.


Air Pollutants , Microbiota , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gases/analysis , Sewage/microbiology , Biodegradation, Environmental , Methylene Chloride , Bioreactors/microbiology , Filtration/methods , Air Pollutants/analysis
...